
HOMEWORK 7

Due date: Monday of Week 8

You might assume the field is C in the exercises of the book if it helps. Properties of normal
operators over R will be proved later.
Exercises: 6, 7, 8, 9, pages 324-325.
Exercises: 4, 6, 9, 10, 11, 13, 14, 15, page 331-332
Exercises: 2, 3, 6, pages 347.

Let V be a finite dimensional vector space over F , where F is either R or C. Let T ∈ End(V ) be
a diagonalizable normal operator with spectral decomposition

T = c1E1 + · · ·+ ckEk.

Recall that each Ei is a polynomial of T . In fact, we have

Ej =
∏
i 6=j

T − ciI
cj − ci

see Corollary, page 336. Let S = {c1, . . . , ck} and f : S → F be a function. Then we define

f(T ) = f(c1)E1 + · · ·+ f(ck)Ek.

In general, the expression f(T ) = f(c1)E1 + · · ·+f(ck)Ek need not to be the spectral decomposition
of f(T ), because it is possible that f(ci) = f(cj) even i 6= j. Consider the simple example when

T =

[
1 0
0 −1

]
and f(x) = x2 for x ∈ {−1, 1}. In this case f(T ) = E1 + E2 is not the spectral

decomposition of f(T ). If f is injective, then f(T ) = f(c1)E1 + · · · + f(ck)Ek is the spectral
decomposition of f(T ). (Check this!) In particular, Ei is also a polynomial of f(T ). This can be
checked directly as in the following problem.

Problem 1. Let f : S → F be an injective map. Show that

Ej =
∏
i 6=j

f(T )− f(ci)I

f(cj)− f(ci)

by a direct computation.

Problem 2. Let f : S → F be an injective map. Let U ∈ End(V ) be another linear operator. Show
that U commutes with T if and only if U commutes with f(T ).

Problem 3. Let V be a finite dimensional inner product space over F with F = R or C. Let T be
a nonnegative operator on V and N be the unique non-negative operator on V such that T = N2.
Let U ∈ End(V ). Show that U commutes with N if and only if U commutes with T .

This is a special case of Problem 2.

Exercise 4 of page 347 collects some equivalent definitions of normal operators. Many of them
were proved in class and in last HW. In the next problem, show the equivalence of (a) and (i).

Problem 4. Let V be a finite dimensional inner product space over F with F = R or C. Let
T ∈ End(V ). Show that T is normal if and only UN = NU , where N is non-negative and U is
unitary such that T = UN , namely, T = UN is the polar decomposition of T .

This is a consequence of Problem 3.

Problem 5. For any A ∈ Matn×n(R), show that there exists P1, P2 ∈ On(R) and a diagonal matrix
D such that A = P1DP2.
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This is called the singular decomposition of A. We talked this in class. Repeat it here.

Problem 6. Consider the matrix

A =

[
4 6
0 4

]
∈ Mat2×2(R).

Find a singular decomposition of A.

Problem 7. Denote On(R) = {g ∈ Matn×n(R) : AAt = In} and SOn(R) = {g ∈ On(R) : det(g) = 1}.
We assume that n is even, namely n = 2m for a positive integer m. Given A ∈ On(R) r SOn(R)
(this means A ∈ On(R) but A /∈ SOn(R)).

(1) If λ ∈ C is an eigenvalue of A, show that λλ = 1 and λ is also an eigenvalue of A.
(2) Show that −1 must be an eigenvalue of A and dimREA(−1) is odd. Here EA(−1) =
{α ∈ Rn : Aα = −α} is the eigenspace corresponding to −1.

(3) Let B ∈ Matn×n(R) be a matrix such that AB = BA. Show that EA(−1) is invariant under
the left multiplication by B and B must have a real eigenvalue.

(4) Consider the matrix P =

[
−Im

Im

]
∈ Matn×n(R). If Q ∈ On(R) such that QP = PQ,

show that det(Q) = 1.

Hint for (2): you can use the fact that dimCEA(−1)C = dimREA(−1), where EA(−1)C =
{α ∈ Cn : Aα = −α} . This fact was proved in the solution of Ex section 7.2. You don’t have to
prove this fact again.


